Distinct functions of the major Fgf8 spliceform, Fgf8b, before and during mouse gastrulation.
نویسندگان
چکیده
The vertebrate Fgf8 gene produces multiple protein isoforms by alternative splicing. Two evolutionarily conserved spliceforms, Fgf8a and Fgf8b, exhibit distinct bioactivities, with Fgf8b having a more potent inductive activity due to higher affinity for Fgf receptors. To investigate the in vivo requirement for Fgf8b, we created a splice-site mutation abolishing Fgf8b expression in mice. Analysis of this mutant has uncovered a novel function of Fgf8 signaling before the onset of gastrulation. We show that the loss of Fgf8b disrupts the induction of the brachyury gene in the pregastrular embryo and, in addition, disrupts the proper alignment of the anteroposterior axis with the shape of the embryo and the uterine axes at embryonic day (E) 6.5. Importantly, Fgf8-null embryos display the same phenotype as Fgf8b-deficient embryos at E6.5, demonstrating that signaling by Fgf8b is specifically required for development of the pregastrular embryo. By contrast, during gastrulation, Fgf8a can partially compensate for the loss of Fgf8b in mesoderm specification. We show that an increased level of Fgf8a expression, which leads to Fgf4 expression in the primitive streak, can also promote mesoderm migration in the absence of Fgf8b. Therefore, different Fgf signals may have distinct requirements for the morphogenesis and gene regulation before and during gastrulation. Importantly, our findings implicate Fgf8 in the morphogenetic process that establishes the defined relationship between the axes of the embryo and the uterus at the beginning of gastrulation, a perplexing phenomenon discovered two decades ago.
منابع مشابه
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus.
The relative contributions of different FGF ligands and spliceforms to mesodermal and neural patterning in Xenopus have not been determined, and alternative splicing, though common, is a relatively unexplored area in development. We present evidence that FGF8 performs a dual role in X. laevis and X. tropicalis early development. There are two FGF8 spliceforms, FGF8a and FGF8b, which have very d...
متن کاملStructural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain.
Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alte...
متن کاملFGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors.
Early patterning of the vertebrate midbrain and cerebellum is regulated by a mid/hindbrain organizer that produces three fibroblast growth factors (FGF8, FGF17 and FGF18). The mechanism by which each FGF contributes to patterning the midbrain, and induces a cerebellum in rhombomere 1 (r1) is not clear. We and others have found that FGF8b can transform the midbrain into a cerebellum fate, wherea...
متن کاملZebrafish fgf24 functions with fgf8 to promote posterior mesodermal development.
Fibroblast growth factor (Fgf) signaling plays an important role during development of posterior mesoderm in vertebrate embryos. Blocking Fgf signaling by expressing a dominant-negative Fgf receptor inhibits posterior mesoderm development. In mice, Fgf8 appears to be the principal ligand required for mesodermal development, as mouse Fgf8 mutants do not form mesoderm. In zebrafish, Fgf8 is encod...
متن کاملMolecular cloning and characterization of human FGF8 alternative messenger RNA forms.
Three alternatively spliced mRNA isoforms of the human fibroblast growth factor-8 (FGF8) gene, expressed in a prostatic carcinoma cell line, have been isolated as cDNA clones and characterized by DNA sequencing. The clones, designated FGF8a, FGF8b, and FGF8e, differ from each other at the NH2-terminal region of the mature proteins and share extensive nucleotide sequence homology in the protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 134 12 شماره
صفحات -
تاریخ انتشار 2007